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Lecture 2
System modelling
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Outline

* Modelling systems
— Mathematical representations
— Block diagrams
— Signal “flow”
+ Differential equations — time domain

» Laplace transform representation — frequency domain




Modelling systems

Want to understand behaviour of the system

— Predict what happens when conditions change

— Prove that controlled system will do what we want

— Optimise controller design depending on requirements
Mathematical representation of the system

— Can manipulate with mathematical operations

— Can calculate (ie simulate) what result should be

— Can use mathematics to prove whether it will work
Obviously, any mathematical calculation or proof is only
as good as the model assumptions

System description

System is generally some physical mechanism
— E.g. Motor, arm, car, vat, electricity grid

Individual parts of the system have physical properties
— E.g. Mass, dimension, temperature, voltage

Individual parts interact — information/signal flows

— E.g. Forces, currents, flows, motion




Modelling basics —
Mechanics

« Control is generally about making something (physical)
happen. E.g.
— Apply force to move object
— Put energy into plant to change temperature
» Controller (and plant) can only operate according to
fundamental mechanical and thermodynamic laws — e.g.
— Conservation of momentum / inertia
— Force -> acceleration
— Conservation of energy
» Express physical behaviour as mathematical
relationships — e.g.

— Speed of machine is a result of applied forces (less friction)
effecting a (rate of) change in momentum / inertia

Block diagrams

¥(t) = a.x(1)

» Represent system components

by blocks VAN a VAN
» Interactions between blocks
comprise signal flow y(1) = [x(t)dt
— Information about system’s
behaviour VN [dt Y1)

— System state

» Blocks then transform input
signal(s) to output signal

¥(1) = dx(1)
dt

x(t) d ()

at

y(t) = X]([) - xg(t)

x,(1) + Y(t) ¥(t) = F{x(t)}
; U = I (U2

X,(t)




Modelling — block diagrams

+ Break down large system into small connected parts

+ Represent each part by function between input and output
+ Mathematically combine

+ Forinstance, model the level of water in a tank:

flow volume height
Input flow
RO o | 1| o
: [dt —
Height Output flow foult)
1
1 h(t) Rout
w22
dv(t) v
dt =Ju® 'R,
Block diagrams
+ May model system with more or less detalil
« E.g. Voltage divider
Vout
—>
Vm
Vout
» R ——
The voltage divider circuit R1 +R2 2
Rearrange:

VR AR)=V,R, " T
1
RlVout = R2 (‘/m _Vout) B




Time dependence

« Components that store energy exhibit memory

— i.e. output depends on past input history

— E.g. spring, capacitor, inertia, momentum, heat
+ Model with conservation of energy laws

— Differential / integral equations between inputs and outputs
Example

Spring law: F(t) = -Kx(1)

Newton’s law:

F (1) + F(1) 1 X(1) x(1) x(t)
dx T > Idl > Jdl >
F(t)=m~—=
dt* +
. Fy1) .
Applied force -K
@0 _ g - k)
x dt”

System memory

» Can represent memory in system by differential

equations
— i.e. rate of change of variable is related to variable (in past)
e.g. spring: 2
m d;+Kx =F,

where F =F (1) is the input signal, and x=x(t) is the output signal
» Solving to find output may not be trivial

— Requires knowledge of initial conditions - ie x(0), x’(0), etc

— Also need to know form of input signal




Modelling basics —
differential equations

Generally, control is about making something change (or
keeping something constant in spite of changing
parameters)

Differential equations describe how things change in
response to other variables. E.g.

» Velocity is rate of change of position with respect to time

* Volume (of fluid) is integral over time of fluid flow

» Chemical reaction may proceed according to differential
equation with respect to time and concentration gradients

Differential equations
- Characteristic equations

Consider a differential equation of the form ia_d;y_x

. . : Sar
Can define differential operator »-¢ '

. dr
and rewrite as:
a,y+aD'y+a,D’y+...+a,D"y=x

Define the characteristic equation as polynomial in D:
a,+a,D'+a,D*+...+a,D" =0

The characteristic equation has n solutions in D
E.g. dzy dy

?+3E+2y:0

Characteristic equationis  D>+3D+2=0

Solutions Dy= -1 and D,= -2




Differential equations
- Solutions

Recall that %=

In general, can form a solution set for differential
equation from the characteristic roots: ie
y,=ePrt, y,=eld, ..

Eg. &y &

—+3—+2y=0
dt* dt

has characteristic equation p2+3p+2=0

so fundamental solution setis y,=e”, and y,=e%

Differential equations
- free response

Free response — what output would be if input was zero
— i.e. have differential equation: s, 43 _,

= 'dt
— Solution y(z) depends only on initial conditions: %}’(0), i=0..N
Can express the free response solution as a weighted
sum of independent functions: yngc,y,m
where constants depend on initial conditions

Example L;V+3ﬂ+2y =X
dt dt

free response is y (1) = c,e’ + c,e?




Differential equations
- forced response

» Forced response is solution if initial conditions are zero
ie. g -

o y(0)=0, i=0..n
Forced response depends only on the input, and for linear system
can be written as a convolution integral:

¥, (1) :jw(t—‘r)x(‘r)df
where w(t) is the weighting function of the differential equation and
can be written as a sum of the solution set to the free response:

w(z):Zn:ciy,(t) t>0

i=0

with initial conditions:

dnflw
dtnfl

d"w
dtth

aw
w(0)=0, —
) ”

=0 1=0 =0

Differential equations
- forced response

2
Example ?+3f+2y=x

From characteristic solution w(t)=c,e™ +c,e”

’ ﬂ =1
dt =0

Set initial conditions w(0)=0
c;+c,=0, -¢;+-2¢,=1,
Soc,;=1,¢,=-1

E.g. if x(z) = 1, then forced response is
v, ()= j [ef("” _ g2 ]ldT

= e”j’e’d‘r%’z’j.ezrdf :%_(17 2¢7 + eizl)
) 0




Transform domain
- Laplace transform

+ Recall that solutions to differential equations can be expressed in
terms of real and complex exponentials
— Can manipulate coefficients algebraically

» So, define Laplace Transform of a function of time

L{fO}=F(9) =1 [ f(De"dt

=T
£-0

where sis a complex variable s = a + jw

* Note that Laplace transform may not converge for all values of s. In

general, will be value o, for which
T
=0

T
B {1 f @) e dr < 4o
£

i.e. Laplace transform exists only for Re(s) > g,

Laplace transform

+ E.g. Laplace transform of  f(r)=¢"

_1 —(s+D)t — 1

L{e” }z J.e”e""dt = 1 e ]

0+ 0+

but only for Re(s) > -1

Non-Convergent Convergent




Laplace transform properties

Derivative: L{g} =sF(s)— f(0%)

Integral: L{[ﬂ f(r)dr}z%F(s)

Convolution: L{Lfl(f)fz (¢ —T)df}= F (s).F,(s)
Time-shift: L{f(t-T)}=e""F(s)

Time-scaling:  L{f(t/a)}=aF (as)

Laplace domain

Laplace variable s = a + jw
i.e. ais damping term

w is oscillatory term .
e’
So, solution on Laplace “plane”
gives representation of
oscillatory and damping
behaviour of signal / system

— Note instability if a<0 (ie, LHP).

unstable  “sinusoidal” stable
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Laplace example

° 2nd Order System a, 4 7y+azﬂ+a3y:bx
dt” dt

» Laplace transform (zero initial conditions)

a;s’Y +a,sY +aY =bX

X (s)

Y(s)=—
a,s”+a,s+a,

i.e. Algebraic relationship between input and output —
transfer function

_Y(s)
“O= X
Summary

+ Can represent (physical) system by mathematical system of signals
and operations
+ Express system in terms of differential equations
— Solve to obtain behaviour of system
— Weighted sums of fundamental solution sets
+ Transform time domain to (complex) frequency domain
— Laplace transform
— Differential and integral operations become algebraic operations
+ Intransform domain, system transfer function becomes an algebraic
expression between input and output

+ Goodwin, Graebe, Salgado: Chapter 4 (modelling), chapter 3 (state-
space)
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