ENGSCI 332
 Control Systems

Lecture 2
System modelling

William Thorpe

Outline

- Modelling systems
- Mathematical representations
- Block diagrams
- Signal "flow"
- Differential equations - time domain
- Laplace transform representation - frequency domain

Modelling systems

- Want to understand behaviour of the system
- Predict what happens when conditions change
- Prove that controlled system will do what we want
- Optimise controller design depending on requirements
- Mathematical representation of the system
- Can manipulate with mathematical operations
- Can calculate (ie simulate) what result should be
- Can use mathematics to prove whether it will work
- Obviously, any mathematical calculation or proof is only as good as the model assumptions

System description

- System is generally some physical mechanism
- E.g. Motor, arm, car, vat, electricity grid

- Individual parts of the system have physical properties
- E.g. Mass, dimension, temperature, voltage
- Individual parts interact - information/signal flows
- E.g. Forces, currents, flows, motion

Modelling basics Mechanics

- Control is generally about making something (physical) happen. E.g.
- Apply force to move object
- Put energy into plant to change temperature
- Controller (and plant) can only operate according to fundamental mechanical and thermodynamic laws - e.g.
- Conservation of momentum / inertia
- Force -> acceleration
- Conservation of energy
- Express physical behaviour as mathematical relationships - e.g.
- Speed of machine is a result of applied forces (less friction) effecting a (rate of) change in momentum / inertia

Block diagrams

- Represent system components by blocks
- Interactions between blocks comprise signal flow
- Information about system's behaviour
- System state
- Blocks then transform input signal(s) to output signal

$y(t)=\frac{d x(t)}{d t}$

$y(t)=x_{1}(t)-x_{2}(t)$

Modelling - block diagrams

- Break down large system into small connected parts
- Represent each part by function between input and output
- Mathematically combine
- For instance, model the level of water in a tank:

Block diagrams

- May model system with more or less detail
- E.g. Voltage divider

Rearrange:

$$
\begin{aligned}
& V_{\text {out }}\left(R_{1}+R_{2}\right)=V_{\text {in }} R_{2} \\
& R_{1} V_{\text {out }}=R_{2}\left(V_{\text {in }}-V_{\text {out }}\right)
\end{aligned}
$$

Time dependence

- Components that store energy exhibit memory
- i.e. output depends on past input history
- E.g. spring, capacitor, inertia, momentum, heat
- Model with conservation of energy laws
- Differential / integral equations between inputs and outputs

Example
Spring law: $F(t)=-K x(t)$

System memory

- Can represent memory in system by differential equations
- i.e. rate of change of variable is related to variable (in past)
e.g. spring:

$$
m \frac{d^{2} x}{d t^{2}}+K x=F_{a}
$$

where $F_{a}=F_{a}(t)$ is the input signal, and $x=x(t)$ is the output signal

- Solving to find output may not be trivial
- Requires knowledge of initial conditions - ie $x(0), x^{\prime}(0)$, etc
- Also need to know form of input signal

Modelling basics differential equations

- Generally, control is about making something change (or keeping something constant in spite of changing parameters)
- Differential equations describe how things change in response to other variables. E.g.
- Velocity is rate of change of position with respect to time
- Volume (of fluid) is integral over time of fluid flow
- Chemical reaction may proceed according to differential equation with respect to time and concentration gradients

Differential equations
 - Characteristic equations

- Consider a differential equation of the form $\sum_{n=0}^{n} a_{i} \frac{d^{i} y}{d t^{i}}=x$
- Can define differential operator $\quad D=\frac{d}{d t}$ and rewrite as:

$$
a_{0} y+a_{1} D^{1} y+a_{2} D^{2} y+\ldots+a_{n} D^{n} y=x
$$

- Define the characteristic equation as polynomial in D :

$$
a_{0}+a_{1} D^{1}+a_{2} D^{2}+\ldots+a_{n} D^{n}=0
$$

- The characteristic equation has n solutions in D
E.g. $\quad \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0$

Characteristic equation is $D^{2}+3 D+2=0$
Solutions $D_{1}=-1$ and $D_{2}=-2$

Differential equations
 - Solutions

- Recall that $\frac{d}{d t^{\omega \prime}}=a e^{\omega}$
- In general, can form a solution set for differential equation from the characteristic roots: ie
$y_{1}=e^{D_{1} t}, y_{2}=e^{D_{2} t}, \ldots$
- E.g. $\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0$
has characteristic equation $D^{2}+3 D+2=0$
so fundamental solution set is $y_{1}=e^{-t}$, and $y_{2}=e^{-2 t}$

Differential equations - free response

- Free response - what output would be if input was zero
- i.e. have differential equation: $\sum_{i=0}^{N} a_{i} \frac{d^{i} y}{d t^{i}}=0$
- Solution $y(t)$ depends only on initial conditions: $\quad \frac{d^{t}}{d t^{t}} y(0), \quad i=0 . . N$
- Can express the free response solution as a weighted sum of independent functions: $y(t)=\sum_{n=0}^{*} c y,(t)$ where constants depend on initial conditions
- Example $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+2 y=x$
free response is $y_{a}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$

Differential equations
 - forced response

- Forced response is solution if initial conditions are zero i.e. $\quad \frac{d^{i}}{d t^{i}} y(0)=0, \quad i=0 \ldots n$

Forced response depends only on the input, and for linear system can be written as a convolution integral:

$$
y_{b}(t)=\int_{0}^{t} w(t-\tau) x(\tau) d \tau
$$

where $\mathrm{w}(\mathrm{t})$ is the weighting function of the differential equation and can be written as a sum of the solution set to the free response:

$$
w(t)=\sum_{i=0}^{n} c_{i} y_{i}(t) \quad t \geq 0
$$

with initial conditions:

$$
w(0)=0,\left.\quad \frac{d w}{d t}\right|_{t=0}=0,\left.\quad \frac{d^{n-2} w}{d t^{n-2}}\right|_{t=0}=0,\left.\quad \frac{d^{n-1} w}{d t^{n-1}}\right|_{t=0}=1
$$

Differential equations
 - forced response

- Example $\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=x$
- From characteristic solution $w(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$
- Set initial conditions $w(0)=0,\left.\frac{d w}{d t}\right|_{t=0}=1$
$c_{1}+c_{2}=0,-c_{1}+-2 c_{2}=1$,
So $c_{1}=1, c_{2}=-1$
- E.g. if $x(t)=1$, then forced response is

$$
\begin{aligned}
y_{b}(t) & \left.=\int_{0}^{1} e^{-(t-\tau)}-e^{-2(t-\tau)}\right] d \tau \\
& =e^{-1} \int_{0}^{1} e^{\tau} d \tau-e^{-2 x} \cdot \int_{0}^{1} e^{2 \tau} d \tau \quad=\frac{1}{2}\left(1-2 e^{-t}+e^{-2 t}\right)
\end{aligned}
$$

Transform domain - Laplace transform

- Recall that solutions to differential equations can be expressed in terms of real and complex exponentials
- Can manipulate coefficients algebraically
- So, define Laplace Transform of a function of time

$$
L\{f(t)\} \equiv F(s) \equiv \lim _{\substack{t \rightarrow \infty \\ \varepsilon \rightarrow 0}} \int_{\varepsilon}^{T} f(t) e^{-s t} d t
$$

where s is a complex variable $s=\alpha+j \omega$

- Note that Laplace transform may not converge for all values of s. In general, will be value σ_{0} for which
i.e. Laplace transform exists only for $\operatorname{Re}(s)>\sigma_{0}$

Laplace transform

- E.g. Laplace transform of $f(t)=e^{-t}$

$$
L\left\{e^{-t}\right\}=\int_{0+}^{\infty} e^{-t} e^{-s t} d t=\left.\frac{-1}{s+1} e^{-(s+1) t}\right|_{0+} ^{\infty}=\frac{1}{s+1}
$$

but only for $\operatorname{Re}(s)>-1$

Laplace transform properties

- Derivative: $L\left\{\frac{d f}{d t}\right\}=s F(s)-f\left(0^{+}\right)$
- Integral: $L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)$
- Convolution: $L\left\{\int_{0+}^{t} f_{1}(\tau) f_{2}(t-\tau) d \tau\right\}=F_{1}(s) \cdot F_{2}(s)$
- Time-shift: $L\{f(t-T)\}=e^{-s T} F(s)$
- Time-scaling: $L\{f(t / a)\}=a F(a s)$

Laplace domain

- Laplace variable $s=\alpha+j \omega$
- i.e. α is damping term
$e^{-\alpha t}$
ω is oscillatory term

$$
e^{-j \omega t}
$$

- So, solution on Laplace "plane" gives representation of oscillatory and damping behaviour of signal / system
- Note instability if $\alpha<0$ (ie, LHP).

Laplace example

- $2^{\text {nd }}$ order system

$$
a_{1} \frac{d^{2} y}{d t^{2}}+a_{2} \frac{d y}{d t}+a_{3} y=b x
$$

- Laplace transform (zero initial conditions)

$$
\begin{aligned}
& a_{1} s^{2} Y+a_{2} s Y+a_{3} Y=b X \\
& Y(s)=\frac{X(s)}{a_{1} s^{2}+a_{2} s+a_{3}}
\end{aligned}
$$

i.e. Algebraic relationship between input and output transfer function

$$
G(s)=\frac{Y(s)}{X(s)}
$$

Summary

- Can represent (physical) system by mathematical system of signals and operations
- Express system in terms of differential equations
- Solve to obtain behaviour of system
- Weighted sums of fundamental solution sets
- Transform time domain to (complex) frequency domain
- Laplace transform
- Differential and integral operations become algebraic operations
- In transform domain, system transfer function becomes an algebraic expression between input and output
- Goodwin, Graebe, Salgado: Chapter 4 (modelling), chapter 3 (statespace)

