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ENGSCI 332
Control Systems

Lecture 2
System modelling

William Thorpe

Outline

• Modelling systems
– Mathematical representations
– Block diagrams
– Signal “flow”

• Differential equations – time domain
• Laplace transform representation – frequency domain
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Modelling systems

• Want to understand behaviour of the system
– Predict what happens when conditions change
– Prove that controlled system will do what we want
– Optimise controller design depending on requirements

• Mathematical representation of the system
– Can manipulate with mathematical operations
– Can calculate (ie simulate) what result should be
– Can use mathematics to prove whether it will work

• Obviously, any mathematical calculation or proof is only 
as good as the model assumptions

System description

• System is generally some physical mechanism
– E.g. Motor, arm, car, vat, electricity grid

• Individual parts of the system have physical properties
– E.g. Mass, dimension, temperature, voltage

• Individual parts interact – information/signal flows
– E.g. Forces, currents, flows, motion
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Modelling basics –
Mechanics

• Control is generally about making something (physical) 
happen. E.g.
– Apply force to move object
– Put energy into plant to change temperature

• Controller (and plant) can only operate according to 
fundamental mechanical and thermodynamic laws – e.g.
– Conservation of momentum / inertia
– Force -> acceleration
– Conservation of energy

• Express physical behaviour as mathematical 
relationships – e.g. 
– Speed of machine is a result of applied forces (less friction) 

effecting a (rate of) change in momentum / inertia

Block diagrams
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x(t) y(t)

y(t) = a.x(t)

�dt
x(t) y(t)

y(t) = �x(t)dt
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y(t) = x1(t) - x2(t)

x(t) y(t)
F

y(t) = F{x(t)}

• Represent system components 
by blocks

• Interactions between blocks 
comprise signal flow
– Information about system’s 

behaviour
– System state

• Blocks then transform input 
signal(s) to output signal
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Modelling – block diagrams

• Break down large system into small connected parts
• Represent each part by function between input and output
• Mathematically combine
• For instance, model the level of water in a tank:
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Block diagrams

• May model system with more or less detail
• E.g. Voltage divider
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Time dependence

• Components that store energy exhibit memory
– i.e. output depends on past input history
– E.g. spring, capacitor, inertia, momentum, heat

• Model with conservation of energy laws
– Differential / integral equations between inputs and outputs

Example
Spring law:  F(t) = -Kx(t)

Newton’s law: 
x(t)Ft(t) 1
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System memory

• Can represent memory in system by differential 
equations
– i.e. rate of change of variable is related to variable (in past)
e.g. spring:

where Fa=Fa(t) is the input signal, and x=x(t) is the output signal

• Solving to find output may not be trivial
– Requires knowledge of initial conditions - ie x(0), x’(0), etc
– Also need to know form of input signal
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Modelling basics –
differential equations

• Generally, control is about making something change (or 
keeping something constant in spite of changing 
parameters)

• Differential equations describe how things change in 
response to other variables. E.g.
• Velocity is rate of change of position with respect to time
• Volume (of fluid) is integral over time of fluid flow
• Chemical reaction may proceed according to differential 

equation with respect to time and concentration gradients

Differential equations
- Characteristic equations

• Consider a differential equation of the form
• Can define differential operator  

and rewrite as:

• Define the characteristic equation as polynomial in D:

• The characteristic equation has n solutions in D
E.g.

Characteristic equation is 

Solutions D1= -1 and D2= -2
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Differential equations
- Solutions

• Recall that
• In general, can form a solution set for differential 

equation from the characteristic roots: ie
y1=eD1t, y2=eD2t, …  

• E.g.

has characteristic equation 

so fundamental solution set is   y1=e-t, and y2=e-2t
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Differential equations
- free response

• Free response – what output would be if input was zero
– i.e. have differential equation:

– Solution y(t) depends only on initial conditions:

• Can express the free response solution as a weighted 
sum of independent functions:
where constants depend on initial conditions

• Example

free response is ya(t) = c1e-t + c2e-2t
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Differential equations
- forced response

• Forced response is solution if initial conditions are zero
i.e. 

Forced response depends only on the input, and for linear system 
can be written as a convolution integral:

where w(t) is the weighting function of the differential equation and 
can be written as a sum of the solution set to the free response:

with initial conditions:
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Differential equations
- forced response

• Example

• From characteristic solution

• Set initial conditions w(0)=0,
c1 + c2 = 0 ,  -c1 + -2c2 = 1,
So c1 = 1, c2 = -1

• E.g. if x(t) = 1, then forced response is
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Transform domain
- Laplace transform

• Recall that solutions to differential equations can be expressed in 
terms of real and complex exponentials 
– Can manipulate coefficients algebraically 

• So, define Laplace Transform of a function of time

where s is a complex variable s = � + j�
• Note that Laplace transform may not converge for all values of s. In 

general, will be value �0 for which 

i.e. Laplace transform exists only for Re(s) > �0
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Laplace transform

• E.g. Laplace transform of

but only for Re(s) > -1 
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Laplace transform properties

• Derivative: 

• Integral: 

• Convolution:

• Time-shift:

• Time-scaling:
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Laplace domain

• Laplace variable s = � + j�
• i.e. � is damping term 

� is oscillatory term

• So, solution on Laplace “plane” 
gives representation of 
oscillatory and damping 
behaviour of signal / system
– Note instability if �<0 (ie, LHP).
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Laplace example

• 2nd order system
• Laplace transform (zero initial conditions)

i.e. Algebraic relationship between input and output –
transfer function
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Summary

• Can represent (physical) system by mathematical system of signals 
and operations

• Express system in terms of differential equations
– Solve to obtain behaviour of system
– Weighted sums of fundamental solution sets

• Transform time domain to (complex) frequency domain
– Laplace transform
– Differential and integral operations become algebraic operations

• In transform domain, system transfer function becomes an algebraic 
expression between input and output

• Goodwin, Graebe, Salgado: Chapter 4 (modelling), chapter 3 (state-
space)


