LECTURE 06 WAREHOUSE ACTIVITY PROFILE

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND

last updated: August 8, 2022

OUTLINE

- **1** Concept of Warehouse Activity Profiling
- 2 MASTER DATA FOR WAREHOUSE ACTIVITY PROFILE
- **3** WAP PROCESSES & EXAMPLES
- **4** Case Study: Construction Material
- **5** Overview of Key Performance Index

source: General references [BH09, Mul94, Fra02, ?]

WAREHOUSE ACTIVITY PROFILING

- What: improving warehouse by understanding natures & exploring patterns
- Idea: data mining with database program

INVESTIGATION = WAP

Crime Investigation	Warehouse Activity Profiling
 gathering evidences & witnesses 	 gathering data
 understanding motivates 	 understanding patterns
 selecting suspects 	 selecting causes & solution
 capturing murder 	• improving efficiency & productivity

Questions & Data \Rightarrow Information \Rightarrow Success of profiling

BENEFITS OF WAREHOUSE ACTIVITY PROFILING

- $\bullet\,$ Understand demands & patterns $\rightarrow\,$ layout, picking policy, labor management
- Calculate Key Performance Index (KPI) \rightarrow snap shot of warehouse
- \bullet Managing SKU \rightarrow select suitable equipment, package, slotting, default pick path
- Gather data for design

- Item Master: database related to SKUs
- Location Master: database of inventory at all storage location
- Order Master:database of sale in-out to warehouse (100+MB)

Questions

- \bullet What is data? \rightarrow obtaining data, time horizon, meaning of each column, wired data
- How each data set related? \rightarrow understanding big picture by interaction
- What is primary key of each set of data? \rightarrow understanding big picture by interaction

PROFILING DATA: ITEM MASTER

- General: SKU ID, description, vender ID
- Bulk break: break SKU, box per pallet
- **Physical:** volume, width (length × height × weight)
- Time: received date, expired date
- Ordering: min-max, response person
- Other: picking note, shipping note, lot #, equipment

Example

Sku ID	Vendor ID	Description	Unit	Unit	Unit	Unit
			length	width	height	weight
AAG47294	AAG	PLNR,'FAT LITTLE',BK	6.2	6.1	1.7	0.9

source: Warehousing Science http://www2.isye.gatech.edu/jjb/wh/book/profile/activities/profilingexercise.html

PROFILING DATA: LOCATION MASTER

- Header: date-time that data are retrieved
- Address: zone, aisle, section, position
- Unit: quantity, case, pallet

Example

Sku ID	Zone	Aisle	Bay	Level	Position	Qty	Unit
SPRSP2-4915	А	102	А	2	В	20	Case
AVE05731	A	102	Α	5	В	12	Case
WLJ36610	А	102	В	1	В	30	Case
SPR5084SP	А	102	В	3	В	10	Piece

source: Warehousing Science http://www2.isye.gatech.edu/jjb/wh/book/profile/activities/profilingexercise.html

TYPICAL WAREHOUSE ADDRESS

PROFILING DATA: ORDER MASTER

- Header: order ID, customer ID,
- Detail: SKU ID, date, time, quantity (Qty), unit
- Note: largest database (200+MB)

Example

Sku ID	Order	Customer	Order	Date	Time
	number	number	qty		
BRTTN460	23926870	615413	4	2004-01-12	17:01:0 0
CMC5810-BE	23559658	10135	8	2004-02-08	14:45:00
KOK00172	23840414	614283	1	2004-01-11	10:41:00
SOF1500	23926870	615413	20	2004-01-12	17:01:00

source: Warehousing Science http://www2.isye.gatech.edu/jjjb/wh/book/profile/activities/profilingexercise.html

KPI

PROCESSES IN WAP

- Define questions: What do you plan to improve (Pro VS Con)?
- Gather data: meaning of data & finding related data:
 - Static: SKU related, layout-zone, std. time, cut-off time
 - Dynamic: picker related, plan, OT, schedule
- Import data: 'connect with database', basic statistic analysis
- Check data: inconsistency, outlier \rightarrow clean-up data
- Analysis data: create & explain distribution (figure)
- Implementation: gap analysis, saving analysis

BASIS WAREHOUSE STATISTIC

SKU Related Statistic

- # active SKU each month: → difficulty & nature of warehouse
- **# pallet receiving each day:** → workload from receiving
- Volume of SKU shipping each day: → material handling
- # line per order: \rightarrow warehouse characteristics & channel
- Seasonality index: \rightarrow balance of workload

Facility Related Statistic

- # new SKU each month: → stability of warehouse
- Avg. inventory per SKU: → workload, inventory policy
- **# workers in each activity:** → division of labor

EXAMPLES OF WAP

- Order mixed distribution: moving partial warehouse, re-range zone
- Channel mixed distribution: business analysis, outsourcing, direct shipment,
- Line per Order distribution: batch picking,
- Pallet order incremental distribution: requirement of equipment, sub-pallet
- Item popularity distribution: storage location, fast picking area, ABC analysis by 'pick'
- \bullet Family pair analysis: SKU in same order \rightarrow zoning

CONSTRUCTION MATERIAL: PRODUCTS

• Category: roof (↑ labor), cement (time limit), paint (flammable)

roof tile

grey cement

home paint

CONSTRUCTION MATERIAL: SALE

• Channel: retail (↑ margin), whole sale (↑ qty), project (know in advance)

homemart retail

wholesale

construction project

KPI

WAREHOUSE LAYOUT

- never enough space \rightarrow space?, qty?, SKU?
- high labor turnover → mgt?, worker?, task?, policy?, equipment?
- layout suck → design?, inventory?, slotting?

Case Study

KPI

WHICH CATEGORY SHOULD BE RE-LOCATED?

Percentage

DIRECT SHIPMENT?: CEMENT OR ROOF

NUMBER OF LINE FOR BATCH PICKING

How to divide sub-pallet?

Roof problems

- Roof problems: require high labor, small order qty, easy damage
- Question: should do sub-pallet? & how much

CONGESTION AT DOCK DOORS

Tranaction

ABC ANALYSIS BY TOTAL SALE

ABC ANALYSIS BY HANDLING

EQUIPMENT SELECTION

Adopted from Frazelle, E. 2002

CYCLE OF INVENTORY

COMMON QUESTIONS FOR WAP

Area	Questions	Profiles
Order picking	 batch size 	• order mix dist.
& shipping process	 picking tour 	 line/order dist.
	 shipping mode 	 line/order dist.
	separation	 cubes/order dist.
Receiving	 receiving mode 	• order mix dist.
& put-away	separation	
	 put-away batch size 	 lines/receipt dist.
	 put-away tour 	 lines/receipt dist.
		 cube/receipt dist.
Slotting	 zone definition 	 popularity dist.
	 storage selection & size 	 cube volume profile
	 item location 	 popular/volume dist.
		 order completing dist.
		 demand correlation

Adopted from Frazelle, E. 2002

KPI

WARNING ON WAP

- Yielding unexpected turns: profiling results ≠ general believes validate data & analysis → new information & fact
- Spending too much time:
 - Unavailable data: e.g., volume
 - Over analysis: e.g., questions & profiling
- Profiling periodically: Data is inconsistency & dynamic → WAP is non-stationary

WHAT IS KPI?

• What: a way to measure performance of organization/activity

• Important:

- indicate success of each activity
- evaluate main objectives
- measure progress of implementation (historical comparison)
- measure productivity & efficiency
- Issues: data collection, measurement, consistency

WHAT ARE CHARACTERISTICS OF GOOD KPI?

- related to the organization objective & mission
- accepted by everyone (supervisor, customers, industry)
- historical comparable & controllable $\rightarrow \frac{\text{output}}{\text{resources}}$
- logical & suggesting solution
- required minimal of works for collecting & analyzing

Type of KPI?

- Financial related KPI: % warehousing cost per total cost, cost per shipped SKU
- Non-Financial related KPI:

KPI FOR EVERY ACTIVITY & ASPECT

Activity	Financial	Productivity	Utilization	Quality	Cycle-Time
Receiving	receiving-cost	receipts per	% utilization	% receipts	receipts CT
	per line	man-hour	of dock	accurate	
Put-away	put-away cost	put-away per	% utilization	% perfect	put-away CT
	per line	man-hour	of labor	put-away	
Storage	storage cost	inventory per	% utilization	% available	inventory days
	per item	square foot	of cubic	location	on hand
Picking	picking cost	lines per	% utilization	% perfect	order pick-
	per line	man-hour	of labor	picking lines	ing CT
Shipping	shipping cost	order prepared	% utilization	% perfect	warehouse
	per order	for shipment	of dock	shipments	order CT
Total	total cost	shipped lines	% utilization	% perfect	total ware-
	per order	per man-hour	of capacity	order	house CT

Adopted from Frazelle, E. 2002

EXAMPLE OF NON-FINANCIAL KPI

- Service Customer View: response time (order cycle time), shipment accuracy (correct qty/total qty), fill rate (qty shipped/ordered qty)
- Service Warehouse View: dock-to-stock time, inventory accuracy, % cross-docking order
- **Productivity:** lines per man-hour, cases per person-hour, cubic space utilization, equipment up-time
- Situation: lines shipped per SKU, inventory turnover, investment pick accuracy, % of new SKUs, % active SKUs, labor turnover, lines per order, total lines shipped per day

Adopted from Hackman, S. 1982.

RATING OF SELECTED KPIS

KPI/Rating	Poor	Sub-Par	Par	Superior	Outstanding
responding time (hrs)	>48	24-48	12-24	4-12	<4
dock-to-store time (hrs)	>48	24-48	8-24	2-8	<2
lines per man-hour	<5	5-10	10-20	20-50	>50
cases per man-hour	8-25	25-50	50-100	100-250	>250
cubic utilization (%)	<65	65-75	75-85	85-95	0.95
annual lines per SKU	<50	50-100	100-250	250-400	>400
inventory accuracy (% qty)	>5.0	1.0-5.0	0.5-1.0	0.05-0.5	< 0.05
inventory turn	< 1.0	1.0-3.0	3.0-6.0	6.0-10.0	>12.0

source Hackman, S. et al. 2001 citehackman2001benchmarking,.

Project comparison:

- Idea: verify success of project with KPIs
- Limitation: 'wired' KPI, standardization, spilling effect

Historical comparison:

- Idea: compare KPIs across period e.g., month-by-month, year-by-year
- Limitation: situations (e.g., no picking, disruption), improving area

Benchmark comparison:

- Idea: compare KPIs across organization
- Limitation: type & scale of warehouses, confidentiality, interpretation
- Method to compare: To-Be-Continue

- 1. In warehouse activity profile, why do we prefer **Database software** (e.g., MS Access) rather than **Spreadsheet software** (e.g., MS Excel)
- $2.\,$ Based on WPA workshop, how many SKUs in Zone A/ Aisle 145?
- 3. Based on WPA workshop, what is the average line/order of SKU located in zone A?

SUMMARY:

- WPA = data mining of warehouse activity
- $\bullet~\text{WPA} \rightarrow \text{nature}/$ pattern, analysis tool, confirmation of problem
 - WMS Data: article master, shipping master, location master
 - Important Data: layout, policy, schedule,
 - Most Difficult: right questions and suitable KPI
 - WPA in Action: database, figure,

REFERENCE

[BH09] J. J. Bartholdi and S. T. Hackman. Warehouse & distribution science.

Suply chain and logistics institute, Georgia institute of technology, 2009.

[Fra02] E. Frazelle. World-class warehousing and material handling. McGraw-Hill Professional, 2002.

[Mul94] D.E Mulcahy.

Warehouse distribution and operations handbook. McGraw-Hill New York, 1994.