LECTURE 03 Equipments in Warehouse:

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND

last updated: August 8, 2022

- 2 STORAGE & RETRIEVAL EQUIPMENTS
- 3 Material handling equipments
- **4** Positioning equipments
- **1** Identification & communication equipment

source: General references [BH09, Mul94, Fra02, ?]

BENEFITS OF EQUIPMENT

- Reduce cost (labor + space)
 - enhance space utilization (rack \rightarrow vertical dimension, denser safer storage)
 - \bullet allow for more efficient order-picking (WMS \rightarrow zone/wave picking)
- Enhance responsiveness (speed + cycle time)
 - Increase throughput (sorter \rightarrow automated sorting & transfer)
- Maintain qualities of products & operations
 - provide efficient ways for identification (e.g., bar code, RF terminal)
 - provide safe & secure material handling (e.g., man-on reach truck)
 - establish & maintain a controlled environment (e.g., access control)

CONCEPT OF UNITIZING EQUIPMENT

- \bullet Idea: standardizing SKUs \rightarrow easy to move & collect
- Where: supplier site, receiving & shipping area
- Issues: installation cost, volume, size & shape (7Eleven tote, Lotus cool box)
- Example: pallet, wrapping machine

Pallet & CO

- Idea: creating unit load by std platform
- Issues: circulation, size, form

COMPARISON OF PALLET MATERIALS

source: https://www.palltechpallets.co.uk

Material	Durability	Repairable	Env. Impact	Application
Wood	med	yes	recyclable	common
Pressed Wood	med	yes	recyclable	printing, tiber
Fiberboard	low	no	recyclable	paper, garment
Plastic	high	no	closed loop	cement, automotive
Metal	high	depends	closed loop	grocery, food, military

Shape of Pallet

Standard Pallets

ISO pallets 1000 mm \times 1200 mm

US pallet 40 in \times 48 in (1016 mm \times 1219 mm) or 42 in \times 48 in Euro pallet 800 mm \times 600 mm & 800 mm \times 1200 mm

OTHER PALLETS

Handling

OTHER INDUSTRIAL PACKAGE

Warehouse v2.0: Equipments

Handling

Positionin

ID & Comm

OTHER TYPE OF UNIT LOAD

STORAGE & RETRIEVAL EQUIPMENT

- Idea: cubic space saving & efficient retrieving
- Where: storage & picking area
- Issue: standardization, FIFO, safety, ergonomic
- Example: floor stack, selective rack (single deep & double deep), carrousel

FLOOR STACK: NO EQUIPMENT

- Idea: stack pallets up-height
- Pro: zero investment, multiple pallets per SKU, high inventory over
- Con: honeycombing problem, stability
- Issue: stack-ability, stack height, aisle width

INDUSTRIAL RACK

SINGLE-DEEP RACK

- Idea: a pallet rack that has a single storage space
- **Pro:** each pallet is independently accessible
- \bullet Con: too many aisles \rightarrow inefficient space utilization

DOUBLE-DEEP RACK

- Idea: a pallet rack that has a double storage space
- Important: Each lane dedicated to one SKU (one pallet or two pallets)
- Pro: Less aisle space required (upto 50% savings in aisle space)
- Con: More work and/or specialized equipment for retrieving

Handling

DRIVE-IN & DRIVE-THROUGH RACK

- Idea: forklift can drive in the structure
- Important: \exists two aisles \rightarrow drive-through, \exists inclined rollers \rightarrow push-back
- Pro: maximize space utilization
- Con: accidents, inefficient of vertical dimension

COMPARISON OF UNIT-LOAD EQUIPMENTS

	Block storage	Selective	Double deep
Installed (USD/unit load)	—	150	150
Footprint	_	large	medium
Storage density	high	low	medium
Throughput	high	high	medium
Space use	very good	fair	good
Load accessibility	poor	excellent	fair
Rotation of loads	LIFO	FIFO	LIFO
Number of aisles	few	many	medium
Unit loads deep/opening	8-10	1	2
Utilization factor	60%	85%	80%
Probability of damage	high	low	low
Security	poor	good	good

source: Malmborg, C. et al. 1998 [PMP+98]

PALLET FLOW RACK

- Idea: a pallet rack that always brings next pallet
- Important: separate picking & put-away
- Pro: high pick density, FIFO
- Con: space utilization, high cost

GRAVITY FLOW RACK

- Idea: a rack that always brings next case/carton (200+ picks/hr)
- Pro: high pick density, FIFO
- Con: space utilization, high cost

BIN SHELVE

- Idea: storing cabinet for case/carton
- Pro: cheap,
- Con: single access, ID, low pick density, LIFO

Handling

Positioning

ID & Comm

CANTILEVER RACK

- Idea: structure with protruding beams to support items
- Pro: suitable for irregular/long shaped product
- Con: strength, balancing, pallet >> carton/piece

CAROUSELS

- Idea: automatic storage/retriving equipment (100-200 pick/hr)
- Pro: no searching, security
- Con: single access

A-FRAME

- Idea: combine picking, storing & packing with automation (300+ pick/hr)
- Pro: high pick density for small & similar SKUs ready pack
- Con: double handling, filling machine

OTHER AUTOMATIC STORAGE EQUIPMENT

Unitload ASRS

Miniload ASRS

Vertical Shutter

- Idea: combine put-away, picking, storing
- Pro: high hight, little labor
- Con: investment, may double handling

Handling

ID & Comm

SMALL STORAGE ITEM EQUIPMENTS

MATERIAL HANDLING EQUIPMENT

- Idea: moving items/SKUs
- Where: everywhere
- Issue: reach, automation, space footprint, congestion
- Type: Manual, Conveyor, Sorter, Crane, AGV, Industrial trucks
- Example: hand truck, forklift, conveyor

Handling

Positioning

ID & Comm

COUNTER BALANCE FORKLIFT TRUCK

- Idea: unit-load mover equipped with motor & hydriodic
- Pro: very useful
- Con: wide turn \rightarrow wide aisle

MANUAL EQUIPMENT

- Idea: manual equipment for moving pallet or tote (no driving cab)
- Pro: small, cheap
- Con: more manual, fixed height (may not apply for block pallet)

INDUSTRIAL TRUCKS

VNA truck

- Idea: moving pallet from A → B with power
- **Type:** turret, footprint, drivable, # pallets
- Pro: save time & labor
- Con: price, storage equipment

CRANE

bridge crane

vA

- Idea: moving items overhead
- Pro: flexible shape/size
- Con: restricted area, congestion with others

OTHERS MHE: RAIL

Tow Line

AGV

RGV

- Idea: moving items on fixed paths usually as loop
- Pro: eliminate worker
- Con: restricted area, investment

CONVEYOR

- What: automatic moving 'regular' shape pallet
- Pro: free labor
- Con: large moving huge std. size, fixed paths

Unit load

Handling

VARIATION OF CONVEYORS

• Selection: materials, slope, price, weight

SORTER

cross belt

tilt tray

sliding shoe

- Idea: automatically distribute product without picking
- Type: weight, dimension, speed & throughput, chute
- Pro: accuracy, slave
- Con: price, installation, handling

SPACE REQUIREMENT FOR POPULAR EQUIPMENTS

	Design				Specification		
No.	Storage	Handling	Pallet	Pallet	Slot	Aisle	Avg.
	(\$/pallet)	(\$/unit)	Depth	Height	Width	Width	Utiliz.
1	Floor (\$0)	Forklift (\$22k)	6	3	1.35	3.6	0.30
2	Drive-In (\$150)	Reach (\$28k)	6	5	1.35	3.6	0.90
3	Double Deep (\$55)	Deep Reach (\$35k)	2	5	1.25	3.0	0.75
4	Push-Back (\$155)	Reach (\$28k)	4	5	1.25	2.7	0.85
5	Selective (\$50)	Reach (\$28k)	1	5	1.25	2.7	0.80

QUESTIONS

- Calculate area requirements for each option if a particular warehouse, on average, needs 3000 pallet positions
- Propose a layout if the width and height of a storage area of this warehouse are 36m. and 20m.

source: Napolitano, M. et al. 2003 [NG94].

Positioning equipment

- Idea: making loading & unloading easier
- Where: receiving & shipping
- Issue: weight, layout (blind spot)
- Example: dock door, dock leveler, staging area

DOCK DOORS

palletizer

dock leveler

dock door

manipulator

stair

DOCK AREA

IDENTIFICATION EQUIPMENT

- Idea: speeding receiving & shipping
- Where: receiving & shipping
- Issue: integration with system
- Example: RFID, bar code reader, magnet

ENTERPRISE SYSTEM

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

Handling

Positioning

ID & Comm

BAR CODE SCANNER & RF TERMINAL

EQUIPMENTS SELECTION

- Finance: IRR, payback period, b/c ratio, terms (rent/loan/lease & lead time)
- Product, itself:
 - Physical: material stage, std. dimension, weight
 - condition: temperature, shaded, traceability, moisture, sterilizing
 - possible defect: fragile, bend/compress/stack/roll-able
 - hazard: flammable, oxidizable, smell, corrosive,
- **System:** requirement (TH, CT, policy, scale-ability, priority), applicable to workers and system
- Material: physical appearance & property, quantity
- Restriction: area, power availability, door size, compliment to other MHE
- Maintenance: spare part, training program, SLA
- Other: prone to accident, customer, industry standard, technology

USEFUL INFORMATION

Material Handling

- Material Handling Taxonomy: http://www.mhia.org/industrygroups/cicmhe/resources/mhe_tax.htm
- Material Handling Pictures: https://www.cirrelt.ca/mhmultimediabank/

Warehouse Tours

- Interactive Tour: http://www.roodbergen.com/warehouse/
- Warehouse Science: http://www2.isye.gatech.edu/jjb/wh/sites/sites.html

COVID-19 AND MHE

Opportunity

- Investment: labor shortage/ less crowded / higher wage / lack of 2^{nd} line mgt \rightarrow better ROI
- Business: online+omni+onlive channels/ idea sandbox + catalyst /less market for fresh \rightarrow development

Threats & Risks

- Fluctuation: bullwhip effect/ future trend (ever-fast changing industry)/ (peak VS off-peak)
- Maintenance: cost of PPE/ overseas MRO & part/

Unit load	Storage & Retrieval	Positioning	ID & Comm
PROBLEM	S		

- 1. Why does a **single-deep rack** accommodate FIFO & FEFO policy, but not **double deep rack**?
- 2. Why floor stack is more suitable for a unit load fast-moving item than double-deep rack?
- 3. Compare similarities & differences of the following equipments
 - selective rack & cantilever rack
 - drive-in rack & drive-through rack

- Equipment helps to reduce storage required, to improve efficiency, to protect condition of products
- Main types of equipment are:
 - Unitload: forming larger unit for easy handling or storage, e.g., pallet, tote
 - Storage: providing storage and address, e.g., rack, bin shelf
 - Handling: providing speed or scale to travel, e.g., forklift,
 - Positioning: assisting with activity, e.g., dock, arm,
 - Communication: providing info how to work, e.g. WMS, barcode,

Unit load	Storage & Retrieval		Positioning	ID & Comm
Refer	RENCE			
[BH09]	J. J. Bartholdi and S. T. Hackma Warehouse & distribution science. Suply chain and logistics institute	n. , Georgia institi	ute of technology, 200	9.
[Fra02]	E. Frazelle. <i>World-class warehousing and mate</i> McGraw-Hill Professional, 2002.	erial handling.		
[Mul94]	D.E Mulcahy. Warehouse distribution and opera McGraw-Hill New York, 1994.	tions handbook	ς.	
[NG94]	M. Napolitano and JE Gross. The Time, Space & Cost Guide to Help You Improve the Design and Center. Distribution Center Management,	o Better Wareh Operations of 1994.	ouse Design: A Hand Your Warehouse Or E	s-on Guide to Distribution
[PMP+98]	Brett A Peters, Charles Malmborg An introduction to material handl <i>College-Industry Council on Mater</i>	, Glenn Petrina ing equipment rial Handling E	a, Dave Pratt, and Do selection. ducation (CICMHE),∷	n Taylor. 1998.