Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity

MANUFACTURING INFORMATION SYSTEM & REVIEW OF OPERATION MANAGEMENT

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: November 2, 2013

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
OUTLINE					

- 1 Keys Concepts of Manufacturing System
- 2 Review of Forecasting in Production Environment
- 3 Aggregated Planning and Sale & Operation Planning
- **4** MATERIAL PRODUCTION SCHEDULING
 - Inventory Control
 - Bill of Material
- **5** Material Requirement Planning
- 6 Integrating Capacity Planning into MPS

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
PREVIO	USLY LECTU	JRE			

- Change is everywhere and ever increasing, so does competition
- Effective response \rightarrow Better communication \rightarrow Right IT
- Issue surrounding IT in manufacturing
- Information technology is strategic advantage, not strategic necessity

This lecture...

- Realize important of Manufacturing System
- Review of key concepts of Operation Management, esp information flow in manufacturing system
- Illustrate how IS (i.e., MS Excel) helps with Aggregate planning, Inventory control, MRP, CRP

Manuf Sys	Forecasting	Agg. & SO		MPS	MRP	Capacity
Manuf	ACTURING	System,	WHO	CARE		
	Criticism		Arg	guments		
• G	ilobalization		• Expos geograp	sing to globa nic risk	l shortage &	
• L	arge capital		• Yield	ing steady re	venue	
• C	looperate = Evil		• Simila	ar to service	industry	
• F	uture is in service		• Relat	ing to manuf	acturing	

(bank & software)

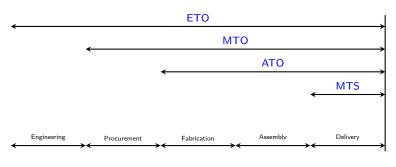
MANUFACTURING CLASSIFICATIONS

- Business Classification
- Inventory Position
- Product & Process Matrix

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
BUSINESS	CLASSIFIC	ATION			

- What: economic classification of industry and business
- General: Statistic & look for information
- Pro MIS: understand business, find implementation method

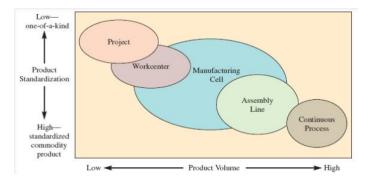
Sources


- North America Industry Classification System-www.census.gov
- Office of Industrial Economic (OIE)-www.oie.go.th
- Contract Directory- www.onbid.org

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
OFFICE	of Indust	rial Econo	OMIC		

	- สถิติอุตสาหกรรม											
ISIC : 151110 ทำสัตว์ เนื้อสัตว์แข่งขึ้ง												
	ชื่อสินค้า	ส/ค คง คลัง ต้น เดือน	การผลิต	ส/ค รับมา	จำหน่าย ในประเทศ	ส่งออก	อื่นๆ	รวมสินค้า ที่จำหน่าย	ส/ค คง คลัง ปลาย เดือน	ก่าลังการ ผลิต	มูลค่า จำหน่าย (พัน บาท)	จ่านวน โรงงาน รวม
ISI	C:151110-070 เนื้อสัต	ว้แช่เย็น แช่เ	เข็ง ไก่ หน่	วย : ดัน								
	ม.ค. 2000	5,129.00	45,057.00	.00	30,652.00	12,235.00	1,478.00	42,887.00	5,821.00	60,016.00	962,639.00	6
	ก.พ.	5,821.00	46,520.00	.05	31,852.00	14,138.00	1,511.00	45,990.00	4,840.05	60,016.00	1,114,898.00	6
	มี.ค.	4,840.05	49,090.28	.00	33,399.70	12,470.39	1,938.00	45,870.09	6,122.24	60,026.00	885,573.00	6
	ເ ນ.ຍ.	6,122.24	41,013.02	.00	28,670.63	10,651.69	1,760.00	39,322.32	6,052.94	60,026.00	812,283.15	6
	W.A.	6,052.94	50,401.17	.00	34,516.75	14,718.86	1,874.00	49,235.61	5,344.50	60,026.00	1,077,244.00	6
	มิ.ย.	5,446.92	38,180.14	.00	25,765.22	10,477.34	2,142.00	36,242.56	5,242.50	64,526.00	1,104,007.00	7
	ก.ค.	5,242.50	42,216.94	.00	28,338.04	10,991.90	1,988.00	39,329.94	6,141.50	64,526.00	1,172,326.42	7
	ส.ค.	6,141.50	44,976.63	.00	30,186.59	11,171.66	2,382.00	41,358.25	7,377.88	64,526.00	1,136,574.20	7
	ก.ย.	7,377.88	44,968.10	.00	29,938.48	11,940.10	2,460.00	41,878.58	8,007.40	64,526.00	1,255,268.49	7
	ด.ค	8,007.40	43,187.56	.00	28,717.71	12,752.78	2,286.00	41,470.49	7,438.47	64,526.00	1,290,357.13	7
	W.D.	7,438.47	43,543.24			12,463.06		41,218.81	7,307.90	64,526.00	1,251,843.53	7
	5.9.	7,307.90	43,336.28	.00	28,651.43	12,917.01	2,525.00	41,568.44	6,550.74	64,526.00	1,293,182.00	7
	ม.ค. 2001	6,550.74	40,122.04	.00	25,773.76	11,614.07	2,425.00	37,387.83	6,859.95	65,526.00	1,391,892.49	7
	ก.พ.	6,859.95	42,544.97	.00	28,697.54	11,978.24	2,420.00	40,675.78	6,309.14	65,526.00	1,245,366.00	7
	มี.ค.	6,309.14	47,134.98	.00	31,347.18	13,233.52	2,701.00	44,580.70	6,162.42	65,526.00	1,510,271.47	7
	LAI.EI.	6,162.42	38,191.33	.00	25,136.52	10,995.30	2,157.00	36,131.82	6,064.93	65,526.00	1,194,044.30	7
	W.A.	6,064.93	44,246.88	.00	21,482.87	20,303.94	2,575.00	41,786.81	5,950.00	65,526.00	1,423,681.58	7
	ົມ.ຍ.		46.920.61	.00	23,642,20	19,702.83	2.576.00	43,345.03	6.949.58	70.526.00	1.644.312.00	7

source: www.oie.go.th

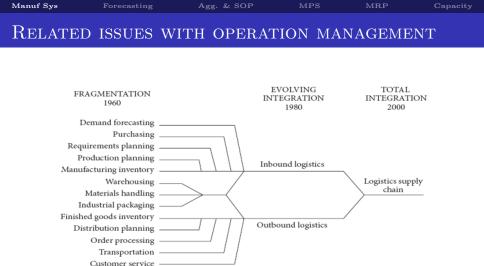


source: Adopted from Smith, S. 1989.

- Engineer to Order (ETO): work with the customer to design and then make the product
- Make to Order (MTO): make the customer's product from raw mat'
- Assemble to Order (ATO): combine a number of preassembled modules to meet customer's specifications
- Make to Stock (MTS): serve customers from finished goods inventory

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
DDODUG	TION DOOL	npag			

PRODUCTION PROCESS



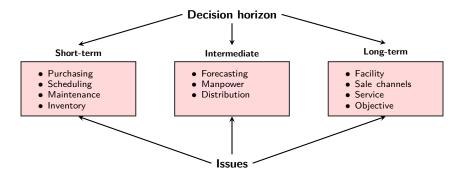
source: Chase & Jacabs. 2010. Operation and Supply Chain Management.

- Project: product remains in a fixed location
- Work center: similar equipment or functions are grouped together
- Manufacturing Cell: dedicated area where similar products are produced
- Assemble line: processes are arranged according to the progressive steps
- Continuous process: assembly line only the flow is continuous

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
System	STRUCTURE				

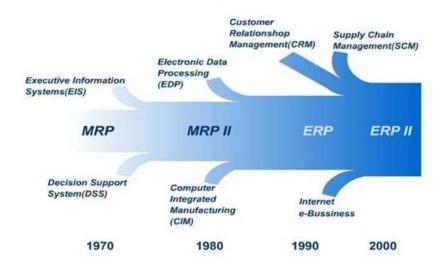
- \bullet Hierarchical: decision in upper-level \rightarrow constraint in lower-level
- Feedback: systematic correction
- Man-Machine interface: \nexists exceptions \rightarrow including man
- 'Single' database & Integration: maintaining data integrity and accuracy
- Transparency: understanding logic and algorithm behind system
- Specific response time: designing for improvement

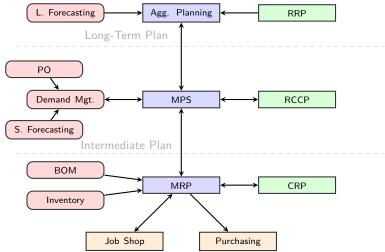
1990


source: Center for Supply Chain Research, Penn State University

1960

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
From F	ORECASTING	то Shipi	PING		


- Guessing customer's demands ⇐⇒ Forecasting
- Smoothing resources \leftarrow Aggregated planning & Demand management
- Sourcing R/M needed to produce ⇔ Purchasing & Material requirement
- Estimating producing time ⇐⇒ Production planing
- Managing stocks ⇐⇒ Warehousing & Inventory control
- Defining appropriated service level \iff Channel & Distribution management
- Ensuring commitment and delivery products ↔ Shipping


source: Nahmias, S. 2001.

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Evalua	tion of M.	ANUFACTUR	ING IS		

source: www.arhum.com

source: Smith, S. 1989.

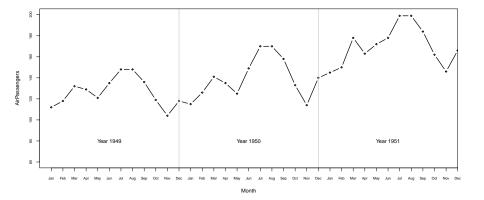
Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
WHAT IS	s Forecas	TING?			

• Predicting future value with data or information, e.g. weather forecasting

Forecasting affects all activities in organization

- Workforce and Capacity: hiring, training
- Operation: purchasing, scheduling, WIP, negotiation, planning
- Accounting: cash flow, equipment investment
- Marketing: pricing, promotion, place

How much products/services do we need and at which time (which location)?



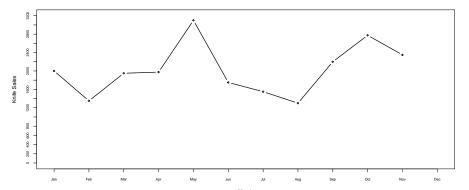
- Description: story, relationship with other data
- Time Horizon: hour, day, week, year

 $\mathsf{Actual} = \mathsf{Forecast} + \mathsf{error}$

- Pattern of Data: seasonal, trend, cycle
- Forecasting Model: assumption, data required, parameters, static VS dynamic
- Accuracy: measuring, how to improve

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Facts A	ABOUT FORI	ECASTING			

- Forecasting is, typically incorrect
- Forecasting is suitable for a group of products
- Forecasting is inaccurate as time horizon increases


source: Chopra, S. & Meindl 2010. pp. 199

Why do we still need Forecasting?

- Incorrect future is better than knowing nothing
- Incorrect result is manageable

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Smoothin	IG: SIMPLE	Forecast	ing Me	THODS	

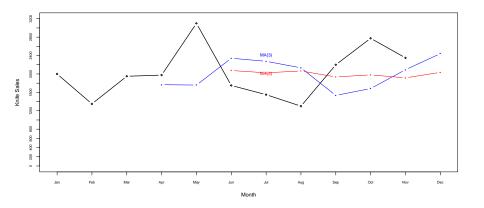
- Assumption: recent past \approx future
- Time Horizon: short period
- Data Pattern: nearly constant
- Benefit: remove randomness, reduce sizes of data
- Example: Moving Average, Exponential Smoothing

 Manuf Sys
 Forecasting
 Agg. & SOP
 MPS
 MRP
 Capacity

 MOVING AVERAGE:
 MA(Q)

• using average value of q pervious periods as forecast

$$F_t = \frac{1}{q} \sum_{i=1}^q A_{t-i}$$


- F_t = Smoothing value at time t
- A_t = Actual value at time t
 - q = Numbers of interested period

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Example	of Movin	ig Averag	E		

Month	Knife Demands	MA(3)	MA(5)
Jan	2000	-	-
Feb	1350	-	-
Mar	1950	-	-
Apr	1975	1767	-
May	3100	1758	-
Jun	1750	2342	2075
Jul	1550	2275	2025
Aug	1300	2133	2065
Sep	2200	1533	1935
Oct	2770	1683	1980
Nov	2350	2092	1915
Dec	-	2440	2034

source: Singkarlsiri C., 1997. pp.10-25

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
ACCURA	acy of For	ECASTING			

- Idea: "average" of Actual_t Forecast_t
- Example: Mean Error (ME), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Mean Absolute Percentage Error(MAPE), Tracking signal (TS)

$$ME = \frac{1}{N} \sum_{t=1}^{N} A_t - F_t \qquad MSE = \frac{1}{N} \sum_{t=1}^{N} (A_t - F_t)^2$$

$$MAD = \frac{1}{N} \sum_{t=1}^{N} |A_t - F_t| \qquad MAPE = \frac{1}{N} \sum_{t=1}^{N} \frac{100 |A_t - F_t|}{A_t}$$

$$bias = \sum_{t=1}^{N} A_t - F_t \qquad TS = \frac{\sum_{t=1}^{N} A_t - F_t}{\sum_{t=1}^{N} |A_t - F_t|}$$

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Measur	REMENTS OF	F ERROR			

If actual knife demand in Dec is 2400, Is MA(3) better than MA(5)?

	MA(3)	MA(5)
ME	152.59	41.71
MAD	639.3	488.9
MSE	567566.7	276407.4
MAPE	31.20	26.06

$$|\mathsf{ME}| \leq \overbrace{\mathsf{MAD} < \mathsf{MSE}}^{\mathsf{typically}}$$

• using a previous value and previous error as forecast

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1}) = \alpha A_{t-1} + (1 - \alpha)F_{t-1}$$

 F_t = Smoothing value at time t

$$A_t = Actual value at time t$$

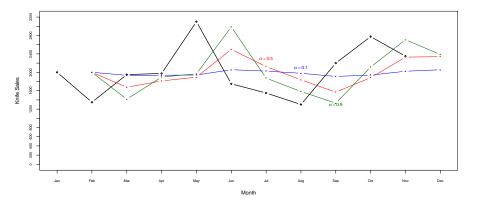
 $\alpha \hspace{.1 in} = \hspace{.1 in} \operatorname{Exponential factor}, \alpha \hspace{.1 in} \in [0,1]$

• Idea: Forecast = α Actual + $(1 - \alpha)$ Old Forecast

$$F_{t} = \alpha A_{t-1} + (1-\alpha) \mathbf{F_{t-1}}$$

= $\alpha A_{t-1} + (1-\alpha) [\alpha A_{t-2} + (1-\alpha) F_{t-2}]$
= $\alpha A_{t-1} + \alpha (1-\alpha) A_{t-2} + (1-\alpha)^{2} \mathbf{F_{t-2}}$

WHAT DOES IT MEAN?


- Effects of actual value and error exponentially decay
- α controls the decay rate; F_1 is initial forecast value
- if $\alpha = 0$, no effect of actual value
- if $\alpha = 1$, no effect of forecast value

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Нош тс	CHOOSE F	$_1$ and α ?			

- Good News: effect of F_0 will decay; typically $F_1 = A_1$
- **Bad News**: select 'right' α is difficult \rightarrow try out and error

Month	Knife Demands	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 0.9$
Jan	2000	-	-	-
Feb	1350	2000	2000	2000
Mar	1950	1935	1675	1415
Apr	1975	1937	1813	1897
May	3100	1940	1894	1967
Jun	1750	2056	2497	2987
Jul	1550	2026	2123	1874
Aug	1300	1978	1837	1582
Sep	2200	1910	1568	1328
Oct	2770	1939	1884	2113
Nov	2350	2023	2330	2709
Dec	-	2056	2340	2386

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
WHICH	lpha is a bett	TER?			

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Model	SELECTION:	WHICH O	NE IS BE	TTER?	

	Moving Avg.			Expo	
	MA(3)	MA(5)	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 0.9$
ME	152.59	41.71	55.11	67.71	42.83
MAD	639.3	488.9	477.13	569.12	612.23
MSE	567566.7	276407.4	343032.73	433846.25	502956.28
MAPE	31.20	26.06	24.57	29.20	30.78

- What is the best parameter of these two models?
- What do they suggest?
- Fluctuation comes from randomness?

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
GUIDELI	NE FOR SE	LECTION			

Method	Observations	Patterns	Ranges
Regression	10-20	stationary, trend, seasonality	2-18 months
Moving average or Exponential smoothing	6-12	stationary	\leq 3 months
Weighted moving average	5-10	stationary	\leq 3 months
Exponential smoothing with trend	5-10	stationary trend	\leq 3 months

source: Jacob. etal 2011.

What if data is not stationary?

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
ITEM M	ASTER FILE				

- Item number:
- Sale ID. UPC Barcode (12 digits in US and 13 digits in other)
- Lot/batch number: e.g., pharmaceutical, ceramic tiles
- Color/size code: shade color, (UF case)
- Buyer code: link to receivable bank a/c
- Supplier code: link to payable bank a/c
- SKU ID. shortage and retrieving code
- Drawing code: link to engineering database
- Family group: category, e.g.,
- Group technology code: dimension, # holes, type material, strength

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
BOM &	ROUTING	File			

 $\operatorname{BOM}\,\operatorname{File}:$ describing qtys to manufacturing item

- Component item number:
- Parent item number:
- Quantity & Unit:
- Scrap allowance:

ROUTING FILE: describing work to manufacturing item

• Routing number:

for each operation

- Operation number:
- Machine number & Tool number & WC number:
- Drawing number:
- Shrinkage:
- Std labor & Std. setup time

Manuf Sys Forecasting Agg. & SOP MPS MRP Capacity WORK CENTER & TOOL FILE

WORK CENTER: describing groups of machine/tool

- Work center number:
- Location:
- Efficient & Utilization:
- Hours & Shift:
- Rate

 $\mathrm{TOOL}\ \mathrm{FILE}:$ describing machines/tool and their status \rightarrow maintainace

- Tool number:
- Status:
- Storage location:
- Current assignment:
- Tool life & Use since last repair:
- Next repair date

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Aggree	ATED PLAI	NNING			

- What: planning for family of product
- Idea: smoothing demands & key resources (workers, # machine)
- Occurred: beginning of fiscal year (unit: month of sale)
- **Input:** long-term forecasting + key resources, policy (overtime, subcontract, backlog, machine capacity)
- Output: production plan, capacity, inventory

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell:	Aggrega	TED PLANN	ING		

SkyCell, a European cell phone manufacturer, and its customers, service providers, come up with monthly forecast (in thousand cell phone) as follow:

Month	Demand	Month	Demand	Month	Demand
Jan.	1000	May	1500	Sep.	1100
Feb.	1100	Jun	1600	Oct.	800
Mar.	1000	Jul	1600	Nov.	1400
Apr.	1200	Aug	900	Dec.	1700

The manufacturing process is govern by numbers of assembly worker, totally 1250 workers. Each worker can assemble each cell phone every 10 minute. The plant operate 20 days a month, 8 hours a day and paid \$20 per hour and 1.5 time wage for any overtime (maximum 20 hour per worker-month). Total raw materials cost \$20, and handling cost is \$3 per unit-month. At the mean time, the company has no-lay off policy. SkyCell has inventory of 50,000 units in Jan and like to have the same level of inventory.

source: Chopra, S. & Meindl 2010. pp. 243

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: Questio	N			

Answer with following questions.

- 1 Assuming no backlog, no subcontractor, and no new hire/leave, what is optimal production scheduling?
- $2\;$ Is any value to increase overtime from 20 hours per worker-month to 40 hour per worker-month
- 3 How the solution in (a) and (b) change if the numbers of assembly workers is 1200 and 1300 workers, respectively
- 4 What SkyCell can do to smooth its production (open-end question)?

source: Chopra, S. & Meindl 2010. pp. 243

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: Formu	LATION			

- **Objective Function:** minimize total costs of production, inventory, and wages
- Decision Variables: units produced, units storage, overtime
 - x_t^{prod} = units produced in month t
 - x_t^{inv} = units storage at the ending of month t
 - y_t^{reg} = man-hours of regular-time in month t
 - $y_t^{over} =$ man-hours overtime in month t

• Constraints:

- cell phone balancing each month
- regular-time and overtime workloads of assembly worker each mouth
- workloads required to produce cell phones in each month

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: Formu	LATION			

$$\begin{array}{lll} \min \ z = 20 \sum_{t} x_{t}^{prod} + 3 \sum_{t} x_{t}^{inv} + (20)(8)(20) \sum_{t} w_{t} & +30 \sum_{t} y_{t}^{over} \\ \text{s.t.} \\ & \text{balancing;} \ x_{t}^{prod} + x_{t-1}^{inv} & = D_{t} + x_{t}^{inv} & \forall \ t \in \mathcal{T} \\ & \text{production;} \ 10 x_{t}^{prod} & = y_{t}^{over} + y_{t}^{reg} & \forall \ t \in \mathcal{T} \\ & \text{limit overtime;} \ y_{t}^{over} & \leq 20w_{t} & \forall \ t \in \mathcal{T} \\ & \text{limit regular-time;} \ y_{t}^{reg} & \leq 160w_{t} & \forall \ t \in \mathcal{T} \\ & \text{non neg.;} \ x_{t}^{inv} & \geq 0 & \forall \ t \in \mathcal{T} \cup \{0\} \\ & \text{non neg.;} \ x_{t}^{prod}, y_{t}^{reg}, \ y_{t}^{over} & \geq 0 & \forall \ t \in \mathcal{T} \end{array}$$

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
TRIAL &	z Error 1	: No Inven	TORY		

		1	2	3	4	5	(
Demand		1000	1100	1000	1200	1500	1600
RT prod.		950	1100	1000	1200	1200	1200
OT prod.						150	150
Outsource						150	250
Inventory	50	0	0	0	0	0	(
		7	8	9	10	11	12
Demand		1600	900	1100	800	1400	1700
RT prod.		1200	900	1100	800	1200	1200
OT prod.		150				150	150
Outsource		250				50	40
							50

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
TRIAL &	Error 2:	Constant	WORKF	ORCE	

		1	2	3	4	5	(
Demand		1000	1100	1000	1200	1500	1600
RT prod.		1200	1200	1200	1200	1200	1200
OT prod.		42	42	42	42	42	42
Outsource							
Inventory	50	292	434	676	718	460	102
		7	8	9	10	11	12
Demand		1600	900	1100	800	1400	1700
RT prod.		1200	1200	1200	1200	1200	1150
OT prod.		42					
Outsource		256					
Inventory		0	300	400	800	600	50

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Optimal					

		1	2	3	4	5	6
Demand		1000	1100	1000	1200	1500	1600
RT prod.		950	1200	1200	1200	1200	1200
OT prod.			50	150	150	150	150
Outsource							
Inventory	50	0	150	500	650	500	250
		7	8	9	10	11	12
Demand		1600	900	1100	800	1400	1700
RT prod.		1200	900	1100	1200	1200	1200
OT prod.		150			50	150	150
Outsource							
Inventory		0	0	0	450	400	50

Man		Forecasting	Agg. & SOP	MPS	MRP	Capacity
Sk	YCELL:	Analysis				

Pre-solve analysis

- Capacity Reg_time: $1250 \times 160 \times 60/10 = 1,200,000$ units/ month
- Capacity over_time: $1250 \times 20 \times 60/10 = 150,000$ units/ month
- Average Demands: \approx 1,242,000 unit/month
- Inventory VS Overtime VS Outsource: minimize outsource

INVENTORY: $$20 + \frac{$20}{6} + $3 \times t = $23.33 + 3t$ OVERTIME: $$20 + \frac{$20}{6} \times 1.5 = 25 OUTSOURCE: \$40

Cost Comparison

	No Inv.	Const Prod	Optimal
Material	276,000	292,880	298,000
RT Labor	43,500	47,833	45,833
OT Labor	3,750	1,470	5,750
Inventory	150	14,496	8,850
Outsouce	66,000	15,360	0
Total	389,400	372,039	358,433

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
PROBLEMS	5 WITH	AGGREGATED	PLANN	ING	

Method

- Price taker: price can influence demand or negotiation (what if) \rightarrow S&OP
- Inventory of component: lack of components \rightarrow MPS & MRP
- \bullet Capacity issues: simplified production constraints \rightarrow RCCP & CRP

Application

- Aggregated product: no information on exact product \rightarrow communication
- **Delivery plan:** frequency, product mixed, lot size \rightarrow communication

- What: manage supply or demand to smooth production given predictable variability by involving related parties
- Idea: seasonal consumer demand, but fixed plant capacity
- Who: marketing, production, logistic, finance, HR
- Man-Power Strategy: chasing (hire VS fire), constant workforce, level (build inventory)
- **Managing supply:** capacity (flexible workforce & machine, subcontracting), investing (common component)
- Managing demand: shift or manipulate demand (using price) or promotion; may result to

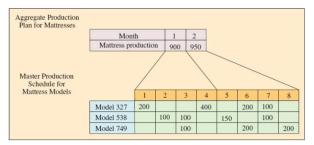
LOW DEMAND: smooth demand \rightarrow low margin/ high inv. cost items PEAK DEMAND: steal share, expansion \rightarrow high margin items

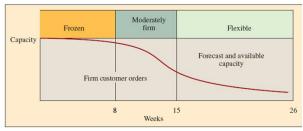
Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SKYCELL	: S&OP	QUESTION			

Answer with following questions.

- 5 How solution in (a) change if backlog is allowed? The estimated cost of backlog is \$70 per unit-month
- $6\,$ How solution in (a) change if temporary worker is allowed? Assuming that each new hire costs \$500 and has 50% of productivity in his first month
- 7 If SkyCell has a promotion that can increase 25% of one month demand but decreases 20% of demands next two months. Which month should SkyCell apply the promotion?

source: Chopra, S. & Meindl 2010. pp. 243


Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
MASTER	Product	ion Schedu	JLE (MI)	PS)	


- What: planning for finish good (end-item Planning)
- Idea: rough plan for produce or stock, time, capacity
- Occurred: beginning of each quarter (unit: week of sale)
- Output: time, production quantity

	Master Schedule Summary Report 10/									10/28/08 2	0:36				
QAD			Training									1	Page		
Item Number: Prod Line: Qty on Hand: Order Policy: Order Period: Order Qty:	10 10.0 POQ 7		imum Or	Medica UM:EA der:O der:O ult:O	s	nmula Code Time Fence afety Time Safety St	1: 0 1: 0	Pur/N Inspe	fg: M ect: No	Purchas	Dier: Time: O se LT: O st LT: O	Plan	Site: 1 squired: Sched: Orders: Policy:	Yes Yes	
	Past 10/26/0									12/15/08 12/21/08					
rod Fcst		D	0	0	0	0	0	0	0	0	0	0	0	0	
orecast		D	0	0	0	0	0	0	0	0	0	0	0	0	
ales Orders	(D	0	0	500	0	0	0	0	0	0	0	0	0	
ross Reqs		0	0	0	0	0	0	0	0	0	0	0	0	0	
str Sched		0	0	0		0	0	0	0		0	0	0	0	
rojected QOH		0	0	0	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500	
vail Promise um ATP		0	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500	

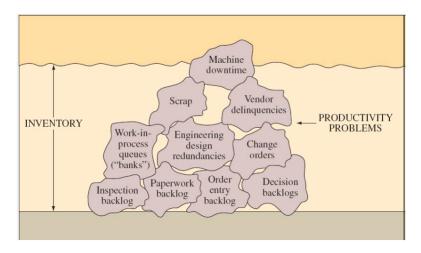
Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity

LINKAGE BETWEEN S&OP AND MPS

source: Jacob. et al 2011.

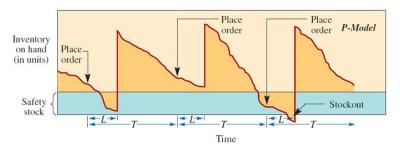
Manuf Sys	Forecasting	Agg. &	2 SOP	MPS	MRP	Capacity
WHICH IT	FEM SHO	ULD WE	DO ITS	MPS?		

- Customer oriented: focus on FG & sub. assembly \rightarrow smoothing production & communicating with customer
- **Resources:** consist of small & manageable ($\# \rightarrow$ times)
- Structure: have BOM
- Capacity: address key capacity of factory (WD)


ROLE AND RESPONSIBILITY OF MPS?

- Planning: create/maintain MPS
- Production: verify MPS, check capacity
- Purchasing: ensure & track inventory receiving
- Warehouse/ Store: ensure quantity & quality of inventory

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Key co	MPONENTS	in MPS			


- Production constraints: lead time, site
- Demands: same time scale
 - Sale forecast: (MTS), e.g., forecast & prod. forecast
 - Customer order: (MTO), e.g., actual demand
 - Safety stock:
 - Seasonal build: SongKran, X-mas (QAD)
- Inventory: on-hand VS on-order, received all?
- Planning BOM:
- Ordering policy: how to lump order together

source: Jacob. etal 2011.

source: Chase and Jacob. 2011.

REVIEW METHODS:

- **Periodic review:** check inventory using chronological criteria, e.g., every fixed period
- **Non-Periodic review:** check inventory non-chronological criteria, e.g., quantity, order from customer, visual inspection,

Manuf Sys Forecasting Agg. & SOP MPS MRP Capacity
POPULAR LOT SIZING RULES

Excluding Costs (QAD):

- Lot-for-Lot (LFL): order = demand in each period
- Period Order Quantity (POQ): order = total demand in fixed periods; LFL \Rightarrow POQ(t=?)
- Fixed Order Quantity (FOQ): order = fixed quantity follow condition, e.g, min, max, multiple
- One Time Only (OTO): order one unit and one time

INCLUDING COSTS: handling cost & ordering cost

- Economic Order Quantity (EOQ): FOQ @ handling + ordering
- Wagner-Whitin: Optimal of handling + ordering
- Part Period Balancing (PPB): order = total demand in period @ handling \approx ordering
- Silver-Meal/least period cost: total demand in period @ min(<u>handling+ordering</u> period
)

- Batch: ensuring color or expiration date, e.g., textiles, leather, chemical
- Multiple: easy to handling, economic of scale, e.g., boxes, chemicals,
- **Min-Max:** similar to *multiple* or *batch*
- **Spoilage:** order qty. = $\frac{\text{req qty}}{1-\text{spoil rate}}$

Manuf Sys I		Agg. & SOP	MPS	MRP	Capacity
Example:	Comparin	NG LOT SIZI	NG RULE	E	

Consider this net requirement:

week	1	2	3	4	5	6	7	8	9	10	11	12
item A	40	15		35	50	30		60	35	80		15

If, the handling cost is \$1 per week and ordering cost is \$100 per order, compare the released order and total cost of the following lot sizing rule: lot-for-lot, EOQ, POQ, S-M, W-W, LUC, LPC

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Example	: Lot siz	ING RULES			

EOQ:
$$Q = \sqrt{\frac{2(100)(30\text{ units per week})}{1\$ \text{ per week}}} = 77.45 \approx 77$$

POQ: $t = \frac{77\text{ units per order}}{30\text{ units per week}} = 2.58$; 2 or 3 periods

PART PERIOD BALANCING:

		week	handling	ordering	total	total
week	net req.	holding	cost	cost	cost	units
1	40	0	0	100	100	40
2	15	1	15	100	115	55
3	0	2	15 + 0	100	115	55
4	35	3	15 + 105	100	220	90

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Exampli	e: Lot siz	ING RULES			

LEAST UNIT COST:

		week	handling	ordering	total	total	unit
week	net req.	holding	cost	cost	cost	units	cost
1	40	0	0	100	100	40	2.5
2	15	1	15	100	115	55	2.09
3	0	2	15 + 0	100	115	55	2.09
4	35	3	15 + 105	100	220	90	2.44

LEAST PERIOD COST/ SILVER-MEAL

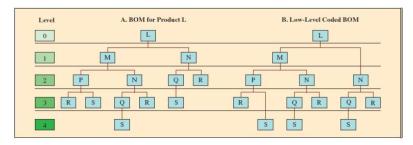
		week	handling	ordering	total	total	period
week	net req.	holding	cost	cost	cost	units	cost
1	40	0	0	100	100	40	100
2	15	1	15	100	115	55	57.5
3	0	2	15 + 0	100	115	55	38.3
4	35	3	15 + 105	100	220	90	55.0

Manuf Sys I		Agg. & SOP	MPS	MRP	Capacity
Example:	Comparin	NG LOT SIZI	NG RULE	E I	

	1	2	3	4	5	6	7	8	9	10	11	12
Lot-for-lot	40	15		35	50	30		60	35	80		15
EOQ	77			77		77			77	77		
POQ	55			115				175				15
W-W	55			115				95		95		
PPB	90				80			95		95		
LUC	55			85		90			115			15
LPC	55			115			95		95			

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
CHARAG	CTER ITEM	AFFECTING	INVENT	ORY	

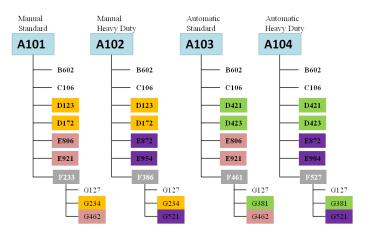
- \bullet Item value: high value \rightarrow low cycle stock
- Impact of shortage: \rightarrow safety stock,
- Frequency of requests:
- \bullet Lead time: custom made \rightarrow long lead time \rightarrow high safety stock
- Other: e.g., alternative shipping, substitution product, price change, variation


- What: qty of components needed for FG total demand = independents demand + dependent demands
- Warning: low-level code \rightarrow time to run in MRP

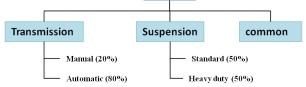
BOM TERMINOLOGY

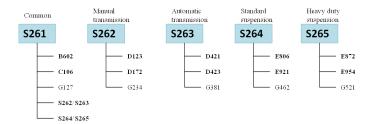
- Low-Level Code: lowest level that a component is assembled
- Summarized BOMs: BOM listed total quantity of components
- Indented BOMs: BOM listed order of components
- Modular BOMs: BOM listed group of components
- Phantom assembly: sub-assembly that sometime available
- Point of use: material at specific location in production

source: Jacob. etal 2011.

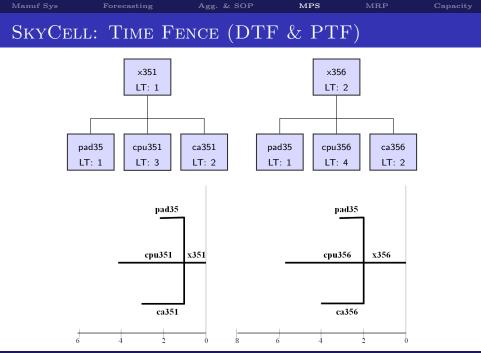

Manuf Sys Forecasting Agg. & SOP MPS MRP Capacity EXAMPLE OF BILL OF MATERIAL

source: Jacob. etal 2011.


	Summariz	ed BOM		-		Extende	d BOM	
Level	Item No.	Quantity	Unit	-	Level	Item No.	Quantity	Unit
1	М	1	each	-	1	М	1	each
.2	Р	1	each		.2	Р	1	each
.2	N	2	each		.3	R	1	each
.3	R	3	each		.4	S	1	each
.3	Q	2	each		.2	N	2	each
.4	S	3	each		.3	Q	1	each
				-	.4	S	1	each
					.3	R	1	each


Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
REGULAR	R BOM				

source:Smith, S. B. 1989.


source:Smith, S. B. 1989.

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Time Fi	ENCE				

Ν	ow Deman Fence			Time Iorizon
	Zone 1 (Frozen)	Zone 2 (Moderately firm)	Zone 3 (Flexible)	
Calculation	use actual demand		pination of 2 forecast	
Type of Order	orders	<mark>firmed</mark> planned order	planned order	

source:Smith, S. B. 1989.

- Demand Time Fence (DTF): changing order is very expensive
- Production Time Fence (PTF): changing order is annoying
- Time Horizon: forecasting time period

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
MPS T	ERMINOLOG	GΥ			

REQUIREMENT RELATED

- Gross requirements:total requirements (MRP term)
- Net requirements: requirements after calculating scheduled receipt (MRP term)

INVENTORY RELATED:

- **Planned order release:** releasing period of an order (back scheduling of planned order due)
- Planned order due: received period of an order
- Scheduled receipts: actual delivery period of an order
- On-Hand inventory/ Projected available: WIP that should have if nothing wrong
- Available to promise (ATP): available qty. for other additional customers
- Available to located: qty. less than orders

source: Jacob. etal 2011.

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Q		$opppp \theta_{-}$			
SKYCEL	L: FIRMED	ORDER &	BOM		

	item ı	10.	on-hand o		on-order	safety	polic	y			
	×351		1	40	$150_{t=3}$	30	$POQ_{t=}$	3			
	×356	×356		10	$180_{t=3}$	0	$\overline{POQ}_{t=}$	4			
					$280_{t=6}$						
		1	2	3	4	5	6	7	8	9	10
x351	forecast	50	30	80	20	70	50	80	40	100	70
(MTS)	order	70									
×356	forecast	70	80	50	50	100	110	60	90	150	80
(MTS/MTO)	order	40	60	50	30/60	20/40	10/20	10			

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: x351 wi	ЕЕК 01-09			

Item no.:	x351		Despriptio	n: Lo	wer-End C	ell Phone					
Lead time:			Safty Stock	c: 30) unit						
Order quantity	3 periods		DTP:	-	weeks						
		PTF:		4	weeks						
					Р	TF				Time	Horz.
Period	past	1	2	3	4	5	6	7	8	9	
Prod. Forecast											
Forecasts		50	30	80	20	70	50	80	40	100	
Actual Demand											
Gross Req.											
MPS				150							
Proj. Avail	140										
ATP											
Cumm ATP											
Planned Order											

source:Smith, S. B. 1989.

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: x356 wi	еек 01-09			

Item no.:	x356		Despriptio	n: Hi	gh-End Cell	l Phone				
Lead time:	3 periods		Safty Stock	c: 0	unit					
Order quantity	4 periods		DTP:	2	periods					
			PTF:	6	periods					
			DT	F			PT	F		Time Horz.
Period	past	1	2	3	4	5	6	7	8	9
Prod. Forecast										
Forecasts		70	80	50	50	100	110	60	90	150
Actual Demand		40	60	50	30	20	10			
Gross Req.										
MPS				180		280				
Proj. Avail	110									
ATP										
Cumm ATP										
Planned Order										

source:Smith, S. B. 1989.

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Concep'	ts of MRI	P			

PRINCIPLE OF DEPENDENT DEMAND

Total quantities required = independent + dependent quantities required

CLARIFICATION

- Gross requirement: total qty. after netting process
- Net requirement: total qty. after considering inventory and scheduled receipts
- planned receipts: projected qty receipted
- **planned inventory:** projected on-hand inventory according to *planned receipts*

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Differe	NCES BTW	MPS & M	RP		

MPS	MRP
	material requirement
Level 0	all components
find lot sizing	expand & combine net req
forecasting/order	MPS + BOM + distribution
MRP	PO & job shop plan
new forecast	any changes
	find lot sizing forecasting/order MRP

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell:	INVENTOR	y Informa	TION		

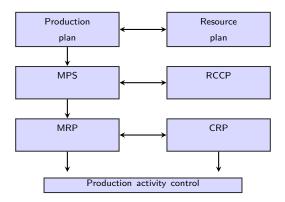
		inventory (10	00 unit)
item no.	on-hand	on-order	policy
x351	-	-	lot-for-lot
x356	-	-	lot-for-lot
pad35	400	-	min=300, max=1000
cpu351	100	1000 (week 10)	(q,Q) = (200,1000)
cpu356	520	-	(q,Q) = (200,1000)
ca351	200	300 (week 11)	min=200, max=1000
ca356	350	-	min=200, max=1000

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SkyCell	: MRP				

cpu356: (q,Q) = (200,1000)

6	cpu356		Lead tim	e	8	weeks	(q,	2)=(200,1	000)								
	Week	Overdue	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
6	x356		0	100	100	100	150	150	200	200	200	150	150	150	150	0	0
gross i	req		0	100	100	100	150	150	200	200	200	150	150	150	150	0	0
sch rei	ciepts																
on har	nd	520	520	420	320	220	70	0	0	0	0	0	0	0	0	0	0
net rec	q		0	0	0	0	0	80	200	200	200	150	150	150	150	0	0
planne	ed reciepts																
planne	ed onhand																
planne	ed order																

ca356: min = 200, max = 1000


8	ca356		Lead tim	e	2	weeks	min=	200, max	=1000								
	Week	Overdue	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
8	x356		0	100	100	100	150	150	200	200	200	150	150	150	150	0	0
gross re	pq		0	100	100	100	150	150	200	200	200	150	150	150	150	0	0
sch reci	iepts																
on han	d	350	350	250	150	50	0	0	0	0	0	0	0	0	0	0	0
net req			0	0	0	0	100	150	200	200	200	150	150	150	150	0	0
planned	d reciepts																
planned	d onhand																
planned	d order																

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
LIMITAT	TION MRP				

- Deterministic data: assuming that every parameters is deterministic, including 'firm order'
- **Capacity planning:** assuming that key constraint is material requirement or infinite capacity
- \bullet System nerviness: rolling horizon and lot-sizing rule \rightarrow different MRP
- Lead time depends on quantities:
- Data integration: purchasing forgets to order; supplier delays

Manuf Sys Forecasting Agg. & SOP MPS MRP **Capacity**

RRP vs RCCP vs CRP

- RRP: long-term (3-5 years/month), purchasing machines, expansion
- RCCP: mid-time (one year/week), hiring permanent staff, ignore components, using std man-hour
- CRP: short time (one year/week), over-time, consider components, using exact lot size

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
SKYCELL:	Standari	D TIME & LO	OT SIZE		

	WC #	# MC	Run time	Run time	Setup time	Avg. lot
			(hr/batch)	(hr/unit)	(hr/lot)	size (unit)
pad35	10	5	0.5	-	-	1000
ca351	20	3	0.20	-	-	1000
	30	500	-	0.01	-	∞
ca356	20	3	0.25	-	-	1000
	30	500		0.03	-	∞
×351	30	500		0.10	0.1	∞
×356	30	500		0.20	0.1	100

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Bill of	CAPACITY				

Bill of Capacity Average hour used to produce each product

	Avg cycle time						
Work center	×351	×356					
10	0.0005	0.0005					
20	0.0002	0.00025					
30	$0.01 {+} 0.1$	$0.03 {+} 0.201$					

Ma			Foreca	sting		Agg. &	z SOP		MPS		MRP		Capao	city
S	SkyCell: MPS & RCCP													
		11	10	10	1.4	15	10	17	10	10		01		
		11	12	13	14	15	16	17	18	19	20	21	22	_
	×351	100	100	150	150	100	100	100	100	100	100	100	100	

If MPS using lot-for-lot policy, then RCCP (resource of each work center) becomes

	week						
	Cap _{max}	11	12	13	14	15	16
10	40×5	100	100	125	150	125	150
20	40×3	45	45	55	67.5	57.5	70
30	$40\times500\times3$	34100	34100	39600	51150	45650	57200
	Max	17	18	19	20	21	22
10	40×5	150	150	125	125	125	125
20	40×3	70	70	57.5	57.5	57.5	57.5
30	$40\times500\times3$	57200	57200	45650	45650	45650	45650

x356

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
LIMITAT	TION OF RC	CP AND EX	XTENSIC)N	

Assumption of RCCP

- $\bullet\,$ not consider queuing in each work center \rightarrow lead time in BOC
- $\bullet\,$ not address efficiency and switch-over time \rightarrow lead time in BOC
- \bullet transition time from one WC to other WC \rightarrow lead time in BOC
- $\bullet\,$ excluding time that need each component $\rightarrow\,$ CRP

TIME PHASED BILL OF CAPACITY (TPBOC)

- What: create rough & realistic schedule of each WC to modify the standard time
- Idea: queue & transition time impacts lead time, not standard time
- Elapsed time: minimal working time for first lot

 $\mathsf{Elapsed\ time} = \frac{\mathsf{std\ hour/unit} \times \mathsf{lot\ size}}{\mathsf{util} \times \mathsf{eff}}$

• Offset time: minimal completed time for first lot

 $transit_{to} + queue time + elapsed time + transit_{from}$

Manuf Sys	Forecasting	Agg. & SOP	MPS	MRP	Capacity
Quiz I					

- 1 Name companies and explain their operations that enables its information technology (IT)/information system (IS) to gain following strategic advantages:
 - Cost reduction
 - Creating new products/services
 - Enhance products/services
- 2 What are factors contribute to a low success rate of information technology in manufacturing environment?
- 3 Explain similarities and differences between Material Requirement Planning (MRP) and Enterprise Resource Planning (ERP)